Safety Analysis Using Petri Nets

IEEE Transactions on Software Engineering (1987)
Nancy G. Leveson and Janice L. Stolzy

Park, Ji Hun
2010.06.21
Contents

- Introduction
- Background
 - Petri net
 - Time petri net
- Safety analysis
- Adding failure to the analysis
- Example of safety analysis
- Conclusion
- Discussion
Introduction

Motivation

- Safety is important especially when it involves serious danger to human life and property.
- Software safety should be considered as a whole system including hardware and human, and they can be represented by Petri net.
- In real-time safety critical system, timing information is very important.

Goal of this paper

- Suggest how to identify high-risk states and eliminate them.
- Suggest how to analyze failure using Petri net.
Petri net

- Places P
- Transitions T
- Input functions I
- Output functions O
- Initial marking μ_0

\[
P = \{P_1, P_2, P_3\}
\]
\[
T = \{t_1, t_2, t_3\}
\]
\[
\mu_0 = \{1,0,0\}
\]
\[
I(t_1) = \{P_1\} \quad O(t_1) = \{P_2, P_3\}
\]
\[
I(t_2) = \{P_2\} \quad O(t_2) = \{\}\n\]
\[
I(t_3) = \{P_3\} \quad O(t_3) = \{\}\n\]
Petri net (cont’d)

- Reachability graph
- Next-state function δ

$$\delta(\sigma_1, t_1) = \sigma_2$$
$$\delta(\sigma_2, t_3) = \sigma_3$$
$$\delta(\sigma_2, t_2) = \sigma_4$$
$$\cdots$$
Time petri net

- Places P
- Transitions T
- Input functions I
- Output functions O
- Initial marking μ_0
- Reachability graph
- Next state function

Min and Max

- When the transition t_i is enabled,
 - Must wait at least during $Min(t_i)$
 - If wait more than $Max(t_i)$, it should be fired

$Max(t_2) < Min(t_3)$
Mishap and hazard

- Mishap: An unplanned event or series of events that results in death, injury or damage to property or equipment
- Hazard: A set of conditions which could cause a mishap

Properties of hazard

- Severity: High-risk and low-risk
- Probability: Not considered in this paper
Hazardous and high-risk when both P3 and P11 have tokens: Gate is up when the train is passing.
Safety analysis (3/6)

- Rechability graph

P1P6P11
 ↓ t1
P2P5P6P11
 ↓ t2
P3P5P6P11
 ↓ t4
P4P5P6P8P11
 ↓ t3
P4P7P8P9P11
 ↓ t4
P4P6P9P10P11
 ↓ t5
P4P6P10P12
 ↓ t6
P4P6P11
 ↓ t7
P2P7P9P11
 ↓ t2
P3P7P9P11
 ↓ t4
P4P7P9P11
 ↓ t2
P2P7P12
 ↓ t7
P3P7P12
 ↓ t3
P4P7P8P12
 ↓ t3
P4P6P11
 ↓ t7

: Hazardous state
Safety analysis (4/6)

- **Identifying high-risk state**
 - Problem of creating full reachability graph
 - Size of the graph is impractically large for a complex system
 - Backward analysis
 - Testing whether the high-risk states are reachable
 - Using Inverse Petri net which is inversed each transition’s input places with output places
 - Problem of Backward analysis
 - Useful only considering small number of high-risk states
 - Possibly as large as or even larger than original graph
 - The author’s solution
 - Using particular type of state named ‘critical state’
 - Don’t need entire backward reachability graph
Safety analysis (5/6)

- Critical states
 - Low-risk states which has both transitions toward high-risk states and low-risk states
 - By selecting for low-risk states way, high-risk states can be avoided

Algorithm:
- Get possible prior states of high-risk states
- Get possible descending states of prior states
- Identifying critical states

Diagram:
- Critical state: P3P10P12*
 - t3
- Critical state: P2P11*
 - t7
- Low-risk state: P4P8P10P12* (t3)
- High-risk state: P3P11* (t3, t6)
- Low-risk state: P2P12* (t7)
Eliminating high-risk state

- **Inter lock**
 - One event always precedes another event.

- **Time constraint**
 - $Max(t_2) < Min(t_1)$
 - Determined using reachability graph.

Example using interlock:

No hazardous state!!
Type of control failures

- A required event that does not occur
- An undesired event
- An incorrect sequence of required events
- Timing failures in event sequences

IEEE definition of failure (IEEE Std1633-2008)

- The inability of a system or system component to perform a required function within specified limits
Representation of control failure

- Previous work – Loss of tokens
 - Hard to know circumstance of the failure

- Author’s suggestion – Failure transition and place
 - Legal transition(T_L) and Failure transition(T_F)
 - Legal place(P_L) and Failure place(P_F)
Adding failures to the analysis (3/9)

- Representation of control failure (cont’d)
 - Legal and faulty state
 - Legal state
 \[
 \sigma \text{ is legal state, iff from initial state } \sigma_0 \\
 \exists \text{path (sequence of transition) } s, s \in T_L^*, \delta^*(\sigma_0, s) = \sigma
 \]
 - Faulty state
 \[
 \sigma \text{ is faulty state, iff from initial state } \sigma_0 \\
 \forall \text{path (sequence of transition) } s, \delta^*(\sigma_0, s) = \sigma, \\
 \exists t_f \in T_f \text{ and } t_f \in s
 \]

Fault reachability graph
Qualities of design associated with failure

- Recoverability
 - After failure, the control of process is not lost and will return to normal execution within an acceptable amount of time

- Fault-tolerance
 - The system continues to provide full performance and functional capabilities in the presence of faults

- Fail-safe
 - The system limits the amount of damage caused by failure and functional requirement could be not satisfied
Recoverability

- **Definition**
 - Number of faulty states are finite
 - There are no terminal faulty node
 - There are no directed loops including *only* faulty states
 - The sum of maximum times on all paths *from the failure transition to correct state* is less than a predefined acceptable amount of time

- **Problem**
 - Once a permanent failure has occurred, the state cannot return to normal unless some repair action has taken place

Diagrams:
- Normal state (with spare tire) → Failure (flat tire) → Recovered but not normal (no spare tire)
Correct behavior path

- Definition
 - Path in reachability graph which contains no failure transition

\[\delta(\sigma_{i-1}, t_i) = \sigma_i, \text{ for } i = 1..n \text{ and } t_i \in T_L \]

Fault-tolerant

- Definition
 - A correct behavior path is a subsequence of every path from initial to any terminal state
 - Sum of maximum times on all paths is less than predefined acceptable amount of time

\[
\sum \text{Max}(t_j) < T_{\text{acceptable}} \text{ for } j = 1...n
\]
Fault-tolerant (cont’d)

- Correct behavior path: $t_1 t_2 t_4 t_8 t_{10}$
- Initial to final path: $t_1 \ f \ t_2 \ t \ R \ t_4 \ t_8 \ t_{10}$

Meaning of ‘Fault-tolerant’

- Even if some initial to terminal path has failure transition, the system should be recovered and perform adequately
- Even if there is failure transition, sum of execution times is less than predefined time
Example of fault-tolerant system

- When failure occurs, R could fire then it puts token in P1
- R is firable any time after firing of t1
 - Time constraint is needed

\[
Min(R) \geq Max(t_2) + Max(t_3) + Max(t_4)
\]
Fail-safe

Definition
- All paths from a failure F contain only low-risk states

\[
\forall \sigma_f \text{ and sequences } s_1 \text{ such that } \delta^*(\sigma_0, s_1 F) = \sigma_f
\]

\[
\neg \exists \text{ sequence } s_2 \text{ and } \sigma_h \in \text{ high-risk states } \delta^*(\sigma_f, s_2) = \sigma_h
\]

Property
- The system may never get back to a legal state

Possible way to design the system
- The system may be n-fault-tolerant and $n+1$ fail-safe
- The system may be fault-tolerant but not fail-safe
Example of safety analysis (1/3)

- **Analysis approach**
 - Consider only those failures with the most serious consequences
 - Add fault-detection and recovery devices to minimize the risk of a mishap (fault-tolerant)
 - If risk can not be lowered, (e.g., unacceptable probability it fails or uncontrollable variables such as human error involved)
 - Add hazard-detection and risk-minimization mechanisms (fail-safe)
Example of safety analysis (2/3)

- Adding failure example

Human failure: ignoring warning signal

Gate failure: premature gate raising

Program failure: Fake signal from controlling computer
Failure analysis example with recovery transition

R1: lower gate when it should be down

R2: ignore spurious control signal
Conclusion

❖ Contribution
- Suggest ‘critical state’ algorithm eliminating high-risk states without generating whole reachability graph
- Suggest model to analysis failure using Petri net

❖ Future work
- Considering probability of hazard occurring not only its severity
- Verifying formally whether the algorithm really generate high-risk free design
Discussion

- Limitation
 - Because of the time, the meaning of each words are little bit different
 - In the failure analysis, how to represent of time-associated failure is not suggested
 - There is no example of fail-safe mechanism
 - Lack of formal verification
Thank You

Q & A
About author

- She was a computer science professor of UC Irvine, University of Washington
- Now she is professor of MIT
- Authority on software safety (safety critical real time system)
- [safe ware: System safety and computers] is published 1995
Definition of terms

❖ Failure
 ▪ Nonperformance or inability of the system or component to perform its intended function for a specified time under specified environmental conditions

❖ Accident
 ▪ An undesired and unplanned event that result in a specified level of loss

❖ Hazard
 ▪ A state or set of conditions of a system that will lead inevitably to an accident(loss event)

From Safeware(1995, NG. Leveson)
Recoverability

- **Recoverability**
 - **Formal definition**
 - Number of states are finite
 \[\text{cardinality} (\sum F) < \infty \]
 - There are no terminal faulty node
 \[\forall \sigma \in \sum F, \exists t \in T \text{ such that } \delta(\sigma, t_i) = \sigma' \]
 - There are no directed loops including only faulty states
 \[\neg \exists \text{ sequence } t_1 \ldots t_n \text{ such that for } \sigma_i \in \sum F, \delta(\sigma_i, t_i) = \sigma_{i+1} \text{ for } i = 1 \ldots n-1 \text{ and } \sigma_1 = \sigma_{n+1} \]
 - The sum of maximum times on all paths from the failure transition to correct state is less than a predefined acceptable amount of time
 \[\forall \text{ path } (t_1 \ldots t_n) \text{ from } \sigma_1 \in \sum F \text{ to } \sigma_2 \in \sum L \]
 \[\sum \text{Max}(t_j) < T_{\text{acceptable}} \text{ for } j = 1 \ldots n \]