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Abstract 

A safety case is a structured argument supported by evidence. The safety case approach is 
considered an effective way to argue for and evaluate system safety, but it has been contrasted 
with prescriptive or process-based approaches, which assume that following the process 
prescribed in safety standards will generate evidence for safety. We create a safety case for a part 
of the reactor protection system software that was developed in prescriptive ways during the 
Korean Nuclear Instrumentation and Control System R&D Center project. Using real-world 
industrial project data, including a number of verification and validation artifacts, we illustrate how a 
safety case can be created based on existing evidence. The proposed safety case to claim safety 
of the target software is mainly based on the argument by satisfaction of all the desired safety 
requirements and the argument by safety analysis activities. The possible advantages and 
drawbacks of utilizing safety cases with prescriptive approaches are discussed.  

1. Introduction 

A safety case is a structured argument, supported by a body of evidence that provides a 

compelling, comprehensible, and valid case that a system is safe for a given application in a given 

operating environment [1]. The safety case approach is considered an effective way to argue for 

and evaluate system safety and it has been contrasted with prescriptive or process-based 

approaches, which assume that following the process prescribed in safety standards will generate 

evidence for safety [2]. Since the safety argument approach and the prescriptive approach each 

have their own merits, these two approaches could complement each other. 

We create a safety case for Bistable Processor software, a part of the reactor protection system 

software developed using prescriptive methods under the Korean Nuclear Instrumentation and 

Control System R&D Center (KNICS) project, whose goal was to achieve technical self-reliance in 

the area of nuclear instrumentation and control. We investigate whether the safety argument 

approach can complement the prescriptive approach by adding values on safety assurance. In the 

KNICS project, conforming to important international standards and guidelines such as NUREG-

0800 [3] and IEEE STD-1228 [4], over one thousand documents were generated [5]. 

Using real-world industrial project data, including a number of verification and validation artifacts, 

we illustrate how a safety case can be created based on existing evidence. We analyze and 

evaluate the results of applying the safety case approach to the existing target system software 
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developed through the use of prescriptive methods. The possible advantages and drawbacks of 

utilizing safety cases with prescriptive approaches are discussed. 

This paper is organized as follows: Section 2 explains the target system, Section 3 presents a 

safety case for the target system, Section 4 analyzes and evaluates the case study, and Section 5 

concludes this paper. 

2. Target System: Bistable Processor (BP) 

The KNICS project was carried out for seven years, starting in 2001. The safety-grade 

Programmable Logic Controller (PLC) and the digital safety system were developed by the KNICS 

project for use in newly constructed nuclear power plants (NPPs) as well as in the upgrading of 

existing analog-based NPPs [6] [7]. Bistable processors (BPs) are a part of the fully digitalized 

reactor protection system (RPS) developed in the KNICS project. A BP compares processing 

variables with the corresponding setpoints. All the trip-actuating functions in the BPs are 

implemented in the software. The trip functioning software in the KNICS RPS is classified as 

safety-critical since it is crucial to the safety of a nuclear power plant in that its malfunctioning may 

have irreversible consequences [8].  

 
Figure 1. Software V&V activities of the KNICS RPS [8] 

The software used in the KNICS RPS was developed under a rigorous procedure [6], and the 

verification and validation (V&V) activities were performed following the software development life 

cycle V&V procedure [9] [10]. Figure 1 shows the V&V activities performed by an independent V&V 

team for the development of the KNICS RPS software. The purpose of the V&V activities was to 

ensure that the KNICS software product satisfies regulatory acceptance criteria and to improve 

software quality by finding and resolving software defects at an early phase during software 

development.  

After the preparation of plan documents in the software planning phase, the development of and 

the V&V activities for the KNICS RPS software were performed according to these plan 

documents. In the requirement and design phases, document evaluations such as licensing 

suitability evaluation, detailed inspection via the Fagan inspection procedure, and traceability 



   

analysis were performed. Formal verification, e.g., model checking, was carried out for the formal 

specifications of the software requirements and the software design, respectively, through the use 

of automated tools [11] [12] [13] [14]. In the implementation phase, testing of the software 

components, the integrated software, and the integrated system was performed. Software safety 

analysis and software configuration management were also included in the V&V activities. For the 

software safety analysis in the SRS phase, software Hazard Operability (HAZOP) was performed 

and then software Fault Tree Analysis (FTA) was applied. The software FTA was applied to a part 

of a software module with some critical defects identified by the software HAZOP in the SDS phase 

[8] [15]. The software configuration management was performed using the in-house tool developed 

in the KNICS project [7]. 

3. Creating a Safety Case for the BP software 

3.1 Structuring the safety case 

 
Figure 2. The BP SW safety case – Bird’s eye view 

 

 
Figure 3. The BP SW safety case – The BP software is safe 

Figure 2 shows an overview of the safety case for BP software. Each part of the safety case will be 

explained in the following sections. Figure 3 shows the top claim and the two main arguments 

denoted by S1 and S2. The top claim of the safety case for BP software is “The BP SW is 

acceptably safe to operate on the PLC.” This safety case proceeds mainly based on the argument 

by satisfaction of all the desired safety requirements (S1) and the argument by safety analysis 

activities (S2). This safety case makes the assumption that the PLC on which the BP program runs 
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is reliable (A1). The safety of the PLC on which the BP program runs also needs to be elaborated 

in the safety case further, but in this paper we focus on the BP software part.  

3.2 Argument by satisfaction of all the desired safety requirements 

  
Figure 4. The BP SW safety case – Argument by satisfaction of the safety requirements 

Figure 4 shows that through the argument by satisfaction of all the desired safety requirements, it 

can be claimed that the BP SW is acceptably safe to operate on PLC if the desired safety 

requirements for BP are not missed during all the development phases (G2) and the BP SW 

satisfies all the identified safety requirements (G3).  

   
Figure 5. The BP SW safety case – Safety requirements are not missed 

As shown in Figure 5, the G2 goal claiming that “the desired safety requirements for BP are not 

missed during all the development phases” can be split into three sub goals: the design 

specification for BP includes all the desired safety requirements (G4); the software requirement 

specification for BP includes all the desired safety requirements (G5); and the software design 

specification for BP includes all the desired safety requirements (G6). 
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Figure 6. The BP SW safety case – Design specification includes all the safety requirements  

Figure 6 shows three pieces of evidence, i.e., Sn1, Sn2 and Sn3, supporting the claim that the 

design specification for BP includes all the desired safety requirements. Safety requirements for the 

BP system were extracted from several sources such as Failure Mode and Effects Analysis 

(FMEA) results (Sn1) and unavailability analysis results (Sn3). The extracted safety requirements 

are found in the RPS design specification, indicated as Sn2 in Figure 6. 

 

  
Figure 7. The BP SW safety case – SRS includes all the safety requirements 
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Figure 8. The BP SW safety case – SDS includes all the safety requirements 

Figure 7 shows that the traceability analysis result in the BP SRS V&V report is the evidence 

supporting the claim that the SRS for BP includes all the desired safety requirements. The 

traceability analysis result links each of the safety requirements included in the design specification 

for BP with the corresponding safety requirement in the software requirement specification for BP. 

Similarly, as shown in Figure 8, the BP SDS is claimed to include all the desired safety 

requirements and two pieces of evidence are presented. The traceability analysis results in the BP 

SDS V&V report, showing how each safety requirement in the SRS was not missed in the SDS, is 

one of the pieces of evidence. Since formal verification with respect to the same safety properties 

as those of the SRS was conducted for the BP SDS, this can also be provided as evidence. 

 
Figure 9. The BP SW safety case – Argument by V&V activities 
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Figure 10. The BP SW safety case – BP SRS satisfies all the safety requirement 

As Figure 9 shows, the BP SW is claimed to satisfy all the identified safety requirements by 

showing that the BP software was developed with the support of rigorous V&V activities at each 

development phase. The claim “BP SRS satisfies the safety requirements” is supported by the two 

pieces of evidence, that is, the V&V results for natural language specification and formal 

specification for BP software requirements, respectively. See Figure 10.  

 
Figure 11. The BP SW safety case – BP SDS satisfies all the safety requirement 

Similarly, Figure 11 shows how the satisfaction of the safety requirements of the BP SDS is 

supported by the evidence of V&V results for the BP SDS. 

As to the implementation phase, the claim that the BP SW on PLC generates the desired outputs 

for the given input scenarios is supported by the evidence of BP SW unit testing results. 

Additionally, the claim that implementation and testing results for the BP SW on PLC are 

independently evaluated is supported by the V&V report for BP SW implementation and testing 
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which includes code inspection results. Figure 12 presents all the arguments and the solutions 

indicating that the BP SW satisfies all the identified safety requirements. 

 
Figure 12. The BP SW safety case – BP SW satisfies all the safety requirement 

3.3 Argument by safety analysis activities  

This subsection describes how the top claim (the safety of the BP SW) can be argued by safety 

analysis activities, in addition to satisfaction of safety requirements. As illustrated in Figure 13, if 

important SW contributable system hazards are not missed (G11) and the remaining or newly 

introduced hazards through lifecycle are managed (G12), the BP SW can be claimed to be 

acceptably safe to operate on the PLC.  

  
Figure 13. The BP SW safety case – Argument by safety analysis activities 

The software HAZOP was performed in the software safety analysis during the requirements phase 

of the BP development, and software HAZOP [15] and software FTA techniques were used in the 
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design and implementation phases [8]. Thus, the SW HAZOP result for the BP SRS in the RPS 

SRS safety analysis report (Sn13) and the SW contributable system hazard list in the RPS SDS 

safety analysis report (Sn14) can both serve as evidence supporting claim G11.  

In order to confirm that the remaining or newly introduced hazards through the lifecycle are 

managed, the remaining or newly introduced hazards during each development phase need to be 

traced. In the KNICS BP development, safety analysis was done during each development phase. 

Therefore, the software HAZOP and software FTA results for the BP SDS and FBD programs 

included in the BP SDS safety analysis report (Sn15) and the hazard checklist for the implemented 

BP FBD program in the RPS implementation safety analysis report (Sn16) can serve as evidence 

supporting claim G12. 

4. Discussion 

The main motivation for this case study is to investigate whether the safety argument approach can 

complement the prescriptive approach. We were able to identify possible advantages and 

drawbacks regarding the use of the safety case approach with the prescriptive approach.  

First, we found that the way BP software safety issues had been addressed while following the 

prescriptive approach could be explicitly presented by creating a safety case. In the case of KNICS 

RPS, over 500 documents were generated and submitted to the regulators. Reviewing those 

artifacts from the beginning to the end took significant effort and time. The relevance of each 

artifact to system safety varies, and figuring out whether a specific part of those documents is more 

or less important in the aspect of system safety is not an easy task. If safety cases can be 

submitted to the regulator with the artifacts produced by following prescriptive approaches, clearer 

and more efficient communication focusing on safety between the developers and the regulators 

can proceed in the review process for certification. 

While following the prescriptive approaches, i.e., conforming to safety-related standards generally 

requires producing many artifacts such as V&V results and documents, creating additional safety 

cases entails extra efforts and costs. Several studies on safety case patterns exist [16] [17] [18] [19] 

[20], but still a significant portion of safety case creation and management relies on manual work. 

Efforts to develop proper guidelines and tools for creating and managing safety cases should be 

continued. Combining prescriptive approaches and safety case approaches in an effective and 

efficient way needs to be studied further.  

When applying the safety case approach to the target system developed by conforming to 

standards, it was found that the safety case approaches were not enough to cover all the 

requirements since not all the requirements are safety requirements. Requirement specifications 

can include other aspects of requirements, e.g., security, performance, etc., as well as safety 

requirements. Generally, the prescriptive approaches consider not only safety requirements, but 

also other quality attributes of the system. Therefore, the safety case approaches may not be able 

to replace the prescriptive approaches.  

It should be noted that since the presented safety case was created with existing artifacts of an 

already developed system, we could not evaluate through this case study how the prescriptive 

approach and the safety case approach can complement each other during the development phase. 



   

5. Conclusion 

We created a safety case for a part of the RPS software developed using a prescriptive approach 

under the KNICS project. Satisfaction of all the desired safety requirements and safety analysis 

activities were used as the main arguments. A number of existing artifacts including V&V 

documents and safety analysis documents were provided as evidence to support claims for the 

safety of the BP software. We investigated whether and how the safety case approach could 

complement the prescriptive approach. We found that the way BP software safety issues had been 

addressed while following the prescriptive approach could be explicitly presented by creating a 

safety case; this merit could contribute to making the review and certification process of the target 

system clearer and more efficient.  

As a feasibility study, the safety case presented in this paper is not complete and has several parts 

that need to be improved and concretized. We have a plan to revise the safety case and study how 

the prescriptive approach and the safety case approach can be effectively harmonized for assuring 

system safety.  
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